Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 653: 123841, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38266939

RESUMO

A dry powder inhaled liposomal azithromycin formulation was developed for the treatment of chronic respiratory diseases such as cystic fibrosis and bronchiectasis. Key properties including liposome size, charge and encapsulation efficiency powder size, shape, glass transition temperature (Tg), water content and in vitro respiratory deposition were determined. Antimicrobial activity against cystic fibrosis (CF) respiratory pathogens was determined by MIC, MBC and biofilm assays. Cytotoxicity and cellular uptake studies were performed using A549 cells. The average liposome size was 105 nm, charge was 55 mV and encapsulation efficiency was 75 %. The mean powder particle size d[v,50] of 4.54 µm and Mass Median Aerodynamic Diameter (MMAD) was 5.23 µm with a mean Tg of 76˚C and water content of 2.1 %. These excellent physicochemical characteristics were maintained over one year. Liposomal loaded azithromycin demonstrated enhanced activity against P. aeruginosa clinical isolates grown in biofilm. The formulation was rapidly delivered into bacterial cells with > 75 % uptake in 1 h. Rapid uptake into A549 cells via a cholesterol-dependent endocytosis pathway with no cytotoxic effects apparent. These data demonstrate that this formulation could offer benefits over current treatment regimens for people with chronic respiratory infection.


Assuntos
Fibrose Cística , Infecções Respiratórias , Humanos , Azitromicina , Antibacterianos , Lipossomos/uso terapêutico , Pós , Fibrose Cística/tratamento farmacológico , Administração por Inalação , Infecções Respiratórias/tratamento farmacológico , Água , Tamanho da Partícula , Inaladores de Pó Seco
2.
Int J Pharm ; 557: 254-263, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30597263

RESUMO

Extensive research has demonstrated the potential effectiveness of curcumin against various diseases, including asthma and cancers. However, few studies have used liquid-based vehicles in the preparation of curcumin formulations. Therefore, the current study proposed the use of nanoemulsion and microsuspension formulations to prepare nebulised curcuminoid for lung delivery. Furthermore, this work expressed a new approach to understanding the aerosol performance of nanoparticles compared to microsuspension formulations. The genotoxicity of the formulations was also assessed. Curcuminoid nanoemulsion formulations were prepared in three concentrations (100, 250 and 500 µg/ml) using limonene and oleic acid as oil phases, while microsuspension solutions were prepared by suspending curcuminoid particles in isotonic solution (saline solution) of 0.02% Tween 80. The average fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of the nebulised microsuspension formulations ranged from 26% and 7.1 µm to 40% and 5.7 µm, for 1000 µg/ml and 100 µg/ml respectively. In a comparison of the low and high drug concentrations of the nebulised nanoemulsion, the average FPF and MMAD of the nebulised nanoemulsion formulations prepared with limonene oil ranged from 50% and 4.6 µm to 45% and 5.6 µm, respectively; whereas the FPF and MMAD of the nebulised nanoemulsion prepared with oleic acid oil ranged from 46% and 4.9 µm to 44% and 5.6 µm, respectively. The aerosol performance of the microsuspension formulations were concentration dependent, while the nanoemulsion formulations did not appear to be dependent on the curcuminoids concentration. The performance and genotoxicity results of the formulations suggest the suitability of these preparations for further inhalation studies in animals.


Assuntos
Curcumina/análogos & derivados , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Administração por Inalação , Aerossóis , Ensaio Cometa , Curcumina/química , Emulsões , Pulmão/metabolismo , Nanopartículas/química , Nebulizadores e Vaporizadores , Concentração Osmolar , Tamanho da Partícula , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA